A simple algorithm to detect complex chart patterns

Finding complex chart patterns has never been an easy task. This article will give you a simple indicator for complex chart pattern recognition. You will have the freedom to detect any pattern with any pattern length. Not just 2-bar candlestick formations, but complex stuff like V-Tops spread over 20 bars.

Defining a chart pattern

Continue reading

If you like it please link it
error

The Edge of Technical Indicators

Classical technical indicators like RSI and Stochastic are commonly used to build algorithmic trading strategies.  But do these indicators really give you an edge in your market? Are they able to define the times when you want to be invested? This article will show you a way to quantify and compare the edge of technical indicators. Knowing the edge of the indicator makes it an easy task to select the right indicator for your market. Continue reading

If you like it please link it
error

Noisy Data strategy testing

Algorithmic trading adds noise to the markets we have known. So why not add some noise to your historic market data? This way you can check if your algorithmic trading strategies are fit for the future. Learn how to generate noisy data and how to test your strategies for stability in a noisy market.

Synthetic market data?

Continue reading

If you like it please link it
error

Backtesting Market Volatility

If you want to trade volatility, you can place a bet on the option market. Just buy an at the money put and call, and at expiry day you will either win or lose, depending on the actual market move since you bought the straddle and the price you paid for the straddle. To put it simple, if the market moves more than you paid for the two options you will win, otherwise you will lose. This article is about a back test of volatility. Continue reading

If you like it please link it
error

Demystifying the 200 day average

The 200 day average is considered as a key indicator in everyday technical analysis. It tells us if markets are bullish or bearish. But can this claim be proved statistically, or is it just an urban legend handed down from one generation of technical analysts to the next? Let’s find out and demystify the 200 day moving average. Continue reading

If you like it please link it
error

KVOL Volatility part 2

How to calculate volatility based on the expected return of a straddle strategy has been shown in part 1 of fair bet volatility KVOL.

Using and Displaying K-Volatility:

KVOL uses the given amount of historic returns to calculate an expected value of an at the money put and call option. The sum of these prices are the historic fair value for implied volatility. It can be used to compare current market implied volatility to historic fair values.

Beside calculating KVOL for a specific return period it can also be used to show it as a projection indicator on the chart.

The example on the chart gives such an expectation channel for the s&P500 at the beginning of each month. The 250 days before are used to calculate KVOL. The line underneath the chart is running KVOL for 13 trading days.

Simplified trading:

to win, with higher volatility expected: you would have bought a straddle at the beginning of the month, expiring at the end of the month. You should not have paid more than a KVOL for 25 bars (working days to expiry) would have suggested. You win if the chart is outside of the projection at the end of the month.

The shown example uses the 250 daily bars before  the beginning of the month to calculate the returns and the price of KVOL. The projected lines represent the winning boundaries of the straddle at expiry.

Continue reading

If you like it please link it
error