A graphical approach to indicator testing

The first step in algorithmic strategy design usually is to find some indicators which give you an edge and tell you something about tomorrow’s market behaviour. You could use a lot of statistics to describe this edge, but I like to take a graphical approach in indicator testing first, and only later on worry about the math and statistics.

Scatter Charts

A scatter chart is a simple to read chart style to see the correlation between two input values. A regression line on the scatter chart gives you a visual idea if the two securities are positively or negatively correlated, the “cloud structure” of the scatter points tell you if this correlation is tight or loose.

This sample scatter shows the correlation between the DAX and DOW levels, and it can be easily seen that these two markets are tightly correlated in a positively way.

The horizontal scale is used for the second security (dax), the vertical scale is used for the first security (dow). This chart type is predefined in Tradesignal, just drag&drop it onto the securities on the chart and select the right amount of data to get the analysis you want to see. (eg. 2000-now). If you see a tight and positive correlation like on the chart above, It migt be used to select the instrument you want to trade. If market A is easier to predict than market B, select A.

Scatter on Indicators

Although a scatter chart is usually used to show the correlation between two markets, it can also be used to show the correlation between two indicators.

The chart above shows the correlation between digital stochastic and momentum. Have a look at the clustering of points in on the right side of the scatter, a high level in digital stochastic usually goes with a high momentum. This insight enables you to get rid of momentum, as digital stochastic is easier to read than the shaky momentum. Less indicators = less parameters = less curve fitting.

Scatter prognosis

Doing this analysis and getting rid of parameters is great if you want to minimize the dangers of curve fitting, but it does not tell you if your indicator is of any use at all, when it come to describing tomorrows move of the market. Surely it is valuable insight that a high level of stochastics corresponds to a high momentum, but does a high momentum today also mean that the market will move up tomorrow? And this question about tomorrow is the key question I ask myself when searching for some edge.

To get a glimpse on the prognosis quality of an indicator we will have to add some colour to our scatter chart. This colour tells me what the market has done after a specific indicator level has been reached. Green for an up move, red for a down move, black for not decided by now.

This chart shows the prognosis quality of the stochastic indicator. The left chart shows the 1 day prognosis of a 5 day stochastic, the right chart gives you the 5 day prognosis of a 21 day stochastic. Observe the clustering of the red and green dots. (black for not decided by now) As you can see on the left chart, the one day prognosis using a 5 day stochastic is not the thing to do. Regardless if stochastic is high or low, you get a nice mixture of red and green dots. This means the market, at a given stochastic level, sometimes moved up, sometimes moved down. Not this behaviour is not very useful for trading. Only in the extreme, near 0 and 100, this indicator seems to implicate a bearish next day movement.

The right chart, showing the longer term prognosis of a long term stochastic seems to be more useful. High levels of the indicator also show positive returns on the 5 days after, unfortunately you can not reverse the logic, as low indicator levels give a rater mixed prognosis. This visual analysis can give you an idea which areas of the indicator might be useful for further analysis.

A one dimensional analysis like on the chart above could also be done without this scatter chart. Going from one dimension to two dimensions is more useful, as it directly can be translated to do a kNN machine learning trading strategy. Have a look at the following chart. It shows the scatter of two indicators and the implication on the next days market move.

Lets start with he right chart. As you can see the red and green dots are evenly distributed, meaning there is no useful correlation between the used indicators and the movement of the market on the day after. If you would use a kNN algorithm with these two indicators, I would bet it would not return great results. Even if you would get a positive return, it might just be a lucky hit or curve fitting.

The opposite is true for the chart on the left. Here you can see some nice clustering of the red and green dots. Low indicator levels seem to predict a bearish move, high indicator levels result in a bullish move on the next day. A distribution like this is the perfect starting point for investing some time in a kNN machine learning  trading strategy. The kNN algorithm would give you a strong prognosis with high or low indicator levels, and most probably only a weak or no prognosis when the indicators are around 50. The returns will be stable, no curve fitting problems should be expected.

Conclusion

Using a scatter chart can give you a nice visual indication if your indicator might be useful for prognosing the next days market move. This is valuable insight, as you can see the whole data universe with one glimpse, even before you do a thoroughly statistical analysis. Numbers can deceive you, pictures usually tell the complete story.

[Tradesignal code]

 

 

 

Using Autocorrelation for phase detection

Autocorrelation is the correlation of the market with a delayed copy of itself. Usually calculated for a one day time-shift, it is a valuable indicator of the trendiness of the market.

If today is up and tomorrow is also up this would constitute a positive autocorrelation. If tomorrows market move is always in the opposite of today’s direction, the autocorrelation would be negative.

Autocorrelation and trendiness of markets

If autocorrelation is high it just means that yesterdays market direction is basically today’s market direction. And if the market has got the same direction every day we can call it a trend. The opposite would be true in a sideway market. Without an existing trend today’s direction will most probably not be tomorrows direction, thus we can speak about a sideway market.

Autocorrelation in German Power

But best to have a look at a chart. It shows a backward adjusted daily time series of German Power.

The indicator shows the close to close autocorrelation coefficient, calculated over 250 days. You will notice that it is always fluctuating around the zero line, never reaching +1 or -1, but let`s see if we can design a profitable trading strategy even with this little bit of autocorrelation.

The direction of autocorrelation

Waiting for an autocorrelation of +1 would be useless. There will never be the perfect trend in real world data. My working hypothesis is, that a rising autocorrelation means that the market is getting trendy, thus a rising autocorrelation would be the perfect environment for a trend following strategy. But first we have to define the direction of the autocorrelation:

To define the direction of the autocorrelation I am using my digital stochastic indicator, calculated over half of the period I calculated the autocorrelation. Digital stochastic has the big advantage that it is a quite smooth indicator without a lot of lag, thus making it easy to define its direction. The definition of a trending environment would just be: Trending market if digital stochastic is above it`s yesterdays value.

Putting autocorrelation phase detection to a test

The most simple trend following strategy I can think about is a moving average crossover strategy. It never works in reality, simply as markets are not trending all the time. But combined with the autocorrelation phase detection, it might have an edge.

Wooha! That`s pretty cool for such a simple strategy. It is trading (long/short) if the market is trending, but does nothing if the market is in a sideway phase. Exactly what I like when using a trend following strategy.

To compare it with the original moving average crossover strategy, the one without the autocorrelation phase detection, you will see the advantage of the autocorrelation phase filter immediately: The equity line is way more volatile than the filtered one and you got lots of drawdowns when the market is sideways.

Stability of parameters

German power has been a quite trendy market over the last years, that`s why even the unfiltered version of this simple trend following strategy shows a positive result, but let`s have a test on the period of the moving average.

Therefore I calculated the return on account of both strategies, the unfiltered and the autocorrelation filtered, for moving average lengths from 3 to 75 days.

Return on account (ROA) =100 if your max drawdown is as big as your return.

The left chart shows the autocorrelation filtered ROA, the right side the straight ahead moving average crossover strategy. You don`t have to be a genius to see the advantage of the autocorrelation filter. Whatever length of moving average you select, you will get a positive result. This stability of parameters can not be seen with the unfiltered strategy.

Autocorrelation conclusion:

Trend following strategies are easy to trade, but only make sense when the market is trending. As shown with the tests above, autocorrelation seems to be a nice way to find out if the market is in the right phase to apply a trend following strategy.

 

Measuring your EDGE in algorithmic trading

There are a lot of statistics which can be used to describe algorithmic trading strategies returns. Risk reward ratio, profit factor, Sharpe ratio, standard deviation of returns… These are great statistics, but they miss an important factor: Are your returns statistically significant or just a collection of lucky noise. The EDGE statistic might me the answer to this question.

 

Statistics in trading:

If the returns of your trading strategy are positive with in-sample and out-of-sample data this is a first sign that you are on the right path. The next step would be to have a look at the risk-reward ratio of your trading to get an impression if the strategy might be useful in a real world environment.

Assuming that your average yearly returns are about twice as big as the worst case historic draw down you can even be more confident that your strategy is useful. But there is still one thing to check before you can be sure that you are not just seeing a curve fit bullshit strategy. The standard deviation of the daily returns vs. your average daily return.

Defining EDGE

Assume your strategy made 250$ over the last year. This averages to about 1$ per day. This 1$ is a good or bad return, depending on the standard deviation of your equity line. If the standard deviation of your equity is 2$, then the 1$ average return strategy would be a bad strategy, as your average returns are way too small in respect to the volatility of your equity. If your volatility of your return curve would just be 50ct and you still make 1$ per day on average, your strategy would be ingenious.

Edge is the ratio of your average returns vs the volatility of your equity line. To be on the safe side,  your average return should be about 5% above the 90% confidence interval of your equity line volatility.

The left chart is a strategy trading an one month RBOB time spread, the right chart shows the same strategy trading German power. Rbob has got an edge of 3%, German power has got an edge of 5%.

If I would have to select which market I want to trade with this sample strategy, I surely would select German power over the rbob time spread. Both curves have their up and downs, but rbob is heavily relying on a lucky trade in September. This lead to a high standard deviation of the equity line , giving you a low edge reading.

Conclusion

Observing the ration between your average daily returns vs. the volatility of your equity curve can give you some valuable insights in the quality of your strategy. If it just called a few lucky trades in history, it will also show a high volatility in returns. And this you most probably want to avoid when turning to algorithmic trading. It`s not just the absolute profit at the end of the year, it is also the path you took to get to this number. The smoother, the better!

[Equilla / Easy Language code for EDGE indicator]

 

Ranking: percent performance and volatility

When ranking a market analysts usually pick the percent performance since a given date as their key figure. If a stock has been at 100 last year and trades at 150 today, percent performance would show you a 50% gain (A). If another stock would only give a 30% gain (B), most people now would draw the conclusion that stock A would have been the better investment. But does this reflect reality?

Percent Performance and Volatility

In reality and as a trader I would never just buy and hold my position, I would always adjust my position size somehow related to the risk in it. I like instruments that rise smoothly, not the roller coaster ones which will only ruin my nerves. So ranking a market solely by percent performance is an useless statistic for me.

Lets continue with our example from above: if stock A, the one who made 50% has had a 10% volatility, and stock B, the 30% gainer, only had a 5% volatility, I surely would like to see stock B on top of my ranking list, and not the high vola but also high gain stock A.

Risking the same amount of money would have given me a bigger win with stock B.

Combining Performance and Volatility

To get stock B up in my ranking list I will have to combine the absolute gain with the market volatility in between. This can be done quite simple. Just add up the daily changes of the stock, normalized by market volatility.Have a look at the formula of this new indicator:

index(today)=index(yesterday)+(price(today)-price(yesterday))/(1.95*stdev(price(yesterday)-price(2 days ago),21))

In plain English: Today’s Vola Return Index equals yesterdays Vola Return Index plus the daily gain normalized by volatility

So if the index has been at 100, the volatility (as a 95% confidence interval over 21 days) is 1 and the stock made 2 points since yesterday, then today’s index would be 100 + 2/1 = 3

Vola Return Index vs. Percent Return Index

Lets have a look at a sample chart to compare the 2 ranking methods. I therefore picked the J.P.Morgan stock.

The upper indicator shows you a percent gain index. It sums up the daily percent gains of the stock movement, basically giving you an impression what you would have won when you would have kept your invested money constant.

The indicator on the bottom is the Vola Return Index. It represents your wins if you would have kept the risk invested into the stock constant. (=e.g. always invest 100$ on the 21 day 95%confidence interval of the daily returns)

Have a closer look at the differences of these two indicators up to October 2016. JPM is slightly up, and that`s why the percent change index is also in the positive area. During the same time the Vola Return Index just fluctuates around the zero line, as the volatility of JPM picked up during this period of time. To keep your risk invested constant over this period of time you would have downsized your position when JPMs volatility picked up, usually during a draw down. No good.

The same can be observed on the upper chart, showing the last months movements of the index. Right now, after the recent correction the percent change index is, like the JPM stock, up again. On the other side the Vola Return Index is still down, due to the rising volatility in JPM.

Vola Return Index – Ranking

Lets put this to a test and rank the 30 Dow Jones industrial stocks according to the percent return index and using my Vola Return Index as a comparison, calculated since 01/01/2015.

The first three stocks are the same, they got the highest vola and highest percent return. But JPM and Visa would get a different sorting. Just see how low the JPM Vola Index is, it would not be the 4th best stock.

Percent returns says JPM and Visa are abou the same, only the Vola Return Index shows that VISA would have been the better investment vehicle compared to JPM. But see for yourself on the chart…

Conclusio

Make sure your indicators show what you actually can do on the market. There is no use in just showing the percent gains of a stock if you trade some kind of VAR adjusted trading style.

Keeping you risk under control is one of the most important things in trading, and using the Vola Return Index instead of just plotting the percent performance can give you some key insights and keep you away from bad investment vehicles.

 

[code for tradesignal users]

 

 

NASDAQ 100 long term candlestick scanner

A short update on the long term Candlestick Scanner.

The Candlestick Scanner scans the Nasdaq 100 stocks for long term bullish or bearish reversal patterns.

The basic idea is to search for hammer and hanging man candlestick patterns. Usually these patterns work nicely on daily charts. My Candlestick Scanner searches for these two patterns on every time frame, from a 1 day per bar compression up to a  250 days per bar compression. This enables me to use a simple, well defined and documented pattern as a description of short to long term reversal setups.

But see for yourself which Nasdaq stocks seem to change the direction according to the long term Candlestick Scan. The list gives you the duration of the reversal formation (expect about the same time to either reach the target or get stopped out) The detected pattern becomes a valid entry signal if a new high (hammer) or low (hanging man) is established.

Bullish reversals on the left side, bearish reversals on the right side.

 

Monthly Seasonal Performance of Stocks

Seasonality changes over time!

First have a look at a screenshot of one of my favorite website investopedia.com They have some nice articles about the seasonal performance of stocks and the effects in trading. But unfortunately the information is not precise, and therefore misleading.

The chart shown suggests that the average return for the S&P500 (index or stocks?) has been positive, except for September. Further down they speak about the January effect, suggesting an average positive performance of stocks in January.

Continue reading

The rhythm of the market

Usually we chart the market at it’s absolute level. But what, if we would just chart the net daily, weekly, monthly movement? Would this be an advantage? Would this show us new trading opportunities?

The short answer is: Yes! The trend is not everything, and it seems to be of some significance for further movements, if the market has moved more than x % from the beginning of the day, week or month.

But let’s have a look at some charts – and you will see how well it works:

The first chat is an intraday chart of EuroDollar, 8am-5pm CET. It shows you the daily net movement.

Continue reading

Swing Trading Indikator

Lokale Hoch- und Tiefpunkte sind die Basis aller technischer Analyse Methoden. Durch die Abfolge dieser Punkte und deren Lage zueinander wird sowohl ein Trend als auch eine Seitwärtsphase definiert. Einzig die Bestimmung der Lokalen Hoch- und Tiefpunkte macht Probleme.

Lokale Hochs und Tiefs am Chart

Um die Umkehrpunkte am Chart zu bestimmen können Sie z.B. den Zig-Zag Indikator einsetzten. Er ist in jeder besseren Chartsoftware enthalten.  Auch könnten Sie die hier bereits mehrfach erwähnte Swing Punkt Definition verwenden.

Beide Vorgehensweisen haben jedoch auch Nachteile: Der Zig-Zag Indikator verfügt eine fixe % Einstellung für die Marktvolatilität. Deshalb muss der Indikator für jeden Markt und jede Zeitebene extra angepasst werden. Die Swing Punkt Definition verwendet zwar keine Parameter, dadurch dass sich das Swing Muster jedoch nur über 3 Bars erstreckt, eignet sich dieses Kursmuster eher zur Definition von sehr kurzfristigen Hoch- und Tiefpunkten.

Swing Punkte – auto adjust

Um den angesprochenen Schwachstellen vorhandener Indikatoren abzuhelfen habe ich einen Indikator entwickelt, der diese Schwachstellen beseitigt. Er passt sich automatisch an die Marktvolatilität an. So wird es möglich den Indikator in verschiedenen Märkten und Zeitebenen ohne Anpassungen zu verwenden.

Continue reading

DAX Ichimoku Scanner Update

Die vergangene Woche brachte, dank der EZB, auch im DAX Veränderungen mit sich. Die Ichimoku Scanner Bewertung hat sich von +5 auf +2 (3*bull, 1*bear) geändert.

Hier die Sicht auf den DAX Index, Tageschart mit Ichimoku Indikator und der automatischen

DAX Ichimoku Scanner Analyse:

DAX Ichimoku

Zur Erinnerung: Der Indikator zeigt die in einer Zahl zusammengefasste Bewertung des Ichimoku Indikators. Um auf die +2 zu kommen werden folgende Punkte Vergeben:

  •  -1 Kurs unter Kijun
  •  0  Chikou in seiner Kerze und über der Wolke
  •  +1 Tenkan über Kijun
  •  +1  Senkou 1 über Senkou 2
  •  +1 Kurs über Wolke

Die geglättete Version dieses Indikators hat ins negative gedreht:

Continue reading

Digitale Stochastic

Die slow stochastic ist ein alter Begleiter für alle Trader. Zuverlässig zeigt dieser Indikator die Überkauft und Überverkauft Bereiche an. Doch leider hat der Indikator einen entscheidenden Nachteil – er hat einen sehr unruhigen Kurvenverlauf.

Stochastic Digital – mehr als nur Überkauft / Überverkauft

 

Die Digitale Stochastic glättet die normale Stochastic nicht nur, sie sorgt mit einer digitalisierung auch für einen ansprechenden Kurvenverlauf.

Hier ein Beispiel für den DAX Future im Stundenchart.

Digitale Stochastic DAX Stunde

Unter der digitalen Stochastic sehen Sie die altbekannte slow Stochastic mit der selben Parametereinstellung. Der Chart ist grün gefärbt wenn die digitale Stochastic steigt, ansonsten ist der Chart rot hinterlegt.

Digitale Stochastic Trading

Continue reading

Ichimoku Scanner

Der Ichimoku Kinko Hyo ist in Japan einer der beliebtesten Indikatoren. Es ist ein Indikator der Informationen über Trendrichtung und Trendstärke kombiniert.

Zudem gibt er schon heute seinen zukünftigen Wert an. Damit ist er ein Unikum unter den Chart Indikatoren.

 

Karin Roller Ichimoku Analyse

Wie dieser großartige Indikator interpretiert wird, habe ich hier aus der gestrigen DAX Tagesanalyse von Karin Rollers Webseite fit4trading.de kopiert. Sie definiert im Wesentlichen 5 Kriterien nach denen der Ichimoku Indikator zu bewerten ist.

Ichimoku Scanner

Anhand dieser 5 Kriterien habe ich einen Oszillator entwickelt, der ihnen auf einen Blick zeigt, wie der Ichimoku Indikator aktuell zu interpretieren ist.

Dreht man die Logik dieser 5 Ichimoku Kriterien um, erhält man einen Oszillator der immer zwischen -5 und +5 pendelt. (Den Tradesignal Code dazu finden Sie am Ende des Artikels)

Neben dem absoluten Wert des Indikators ist natürlich auch seine Richtung von Interesse.  Sehen Sie am nächsten Bild, wie selbsterklärend die Interpretation dieses Ichimoku Oszillator ist.

DAX Ichimoku Chart

Aktuell steht der Oszillator, wie auch Karin Rollers Ichimoku Analyse, auf plus 5 – alles bullish.

Ichimoku DAX Scanner

Continue reading

DAX Marktbreite und 200 Tage Linie

Bald ist es wieder so weit und der DAX steigt über seine 200 Tage Linie. Das wäre an und für sich nichts Besonderes, steigt oder fällt der DAX doch jeden Tag über irgendeinen gleitenden Durchschnitt, doch ist die 200 Tage Linie etwas besonders an sich: Sie ist ein selbst erfüllender Indikator!

 Bankberater, Bild, Hausfrauen

Wenn jemand eigentlich nichts über technische Analyse weiß, die 200 Tage Linie kennt er. Jeder Bankberater versucht damit seine Aktien zu verkaufen; Wenn der Markt über der 200 Tage Linie liegt soll das  ein bullishes Signal sein.

DAX Above 200 Day Average

 

Und in der Tat, da jeder diesen Indikator kennt, ist es tatsächlich ein bullishes Signal wenn der Markt über seiner 200 Tage Linie liegt, schlussendlich trauen sich dann alle die fast nix von technischer Analyse wissen in den Markt.

DAX Marktbreite

Um zu sehen ob so ein Schnitt des DAX über die 200 Tage Linie auch signifikant oder nur ein Strohfeuer ist, kann man die Marktbreite des Index untersuchen.

Marktbreite=Wie viel % der Aktien eines Index liegen über der 200 Tage Linie

Diesen Indikator sehen Sie unter dem DAX Chart abgebildet.

DAX Above 200 Day Average history

Allgemein gilt für die Interpretation, dass wenn der DAX über der 200 Tage Linie liegt und mehr als 50% der Aktien des DAX ebenfalls über der 200 Tage Linie liegen, man trendfolgend vorgehen kann. Wenn dann einmal 100% der Aktien über der 200 Tage Linie liegen ist die Blase meist zu Ende und man sollte die Position mit einem engen Stop absichern.

zum Tradesignal Equilla Code Passwort “code”